the full free text is available here for anybody who wants to read the study
The protocol for the testing was as follows
Isokinetic and isometric muscle fatigue protocol. An isokinetic and isometric test was performed on a Biodex isokinetic dynamometer (System 3, Biodex Medical Systems) to evaluate the contractile performance of the knee extensors. The dynamometry was preceded by a standardized warm-up consisting of an ascent and descent of a stairs (11-m altitude) and two 50-m runs at moderate pace. The isokinetic test was performed on the right leg. This consisted of 5 x 30 maximal voluntary isokinetic knee extensions at a constant angular velocity of 180°/s. Each contraction was initiated from a position of 90° knee flexion and was continued to the point of full knee extension. After each extension, the lower leg was passively returned to the start position at 90°/s (~1.5 s for full cycle). Each bout of 30 contractions was separated by a 1-min recovery period. Subjects were encouraged during the first three contractions to make sure that they were contracting maximally from the start of each bout. Subjects received visual feedback of their produced peak torque. Peak torque during each contraction (1–30) was measured and used to calculate the average peak torque during each bout of exercise. Subsequently, the isometric test was performed on the left leg. The knee angle was fixed at 45°, and the maximal static voluntary contraction (MVC) torque was determined. The highest torque of three 3-s attempts, separated by 30 s of rest, was considered as MVC. Subjects were then asked to contract isometrically with their knee extensors at a target torque of 45% of MVC for as long as possible to determine isometric endurance.
400-m race. The time to complete 400-m running was evaluated in an indoor 300-m flat athletics track (Flanders Sports Arena, Ghent, Belgium). Time was recorded by an infrared light-based electronic device at the start and finish (400 m). Subjects were asked to warm up, according to their personal routine during ~45 min. Following warm-up and 2–3 min before the start, a capillary blood sample was obtained from a finger tip and analyzed for lactate with Lactate PRO test strips (Arkray, Kyoto, Japan). Also at 90 and 180 s following finish, blood lactate was measured. The maximal lactate accumulation was considered as the higher of the two postsprint lactate values.
I’d note that some more recent work suggests that beta-alanine has no additional benefit if the trainee is doing high intensity interval work. Presumably, the effects simply aren’t additive and there is a limit to how much you can top up the sytem.
I think it might be useful in an early GPP phase before the athlete has started doing much SE work to improve buffering and allow better work capacity when such work is brought in.
Lyle